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Mean-Variance Utility

@ Many researchers in finance (Markowitz, Sharpe etc.) used
mean-variance utility functions. But is it compatible with vNM
theory?

@ The answer is yes ... approximately ... under some conditions

@ What are these conditions?

» v is quadratic
> If asset returns are joint normal
» For small risks
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Mean-Variance: Quadratic Utility

Suppose utility is quadratic, v(y) = ay — by?

Expected utility is then
Elv(y)] = aEly] — bEly’] = aEly] - b(Ely)* + Var(y))

Thus, expected utility is a function of the mean, E[y], and the
variance, Var(y), only

@ This function increases monotonically in the mean as long as
E[z] < a/2b, and it decreases monotonically in the variance

@ This justification for mean—variance analysis is not a good one,
though, because quadratic utility implies IARA
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Mean-Variance: Joint Normal

Suppose all lotteries in the domain have normally distributed prized.
(They need not be independent of each other)

» This requires an infinite state space
@ It is a fact of mathematics that any combination of such lotteries will
also be normally distributed
@ The normal distribution is completely described by its first two
moments
@ Therefore, the distribution of any combination of lotteries is also
completely described by just the mean and the variance

@ As a result, expected utility can be expressed as a function of just
these two numbers as well
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Mean-Variance: Small Risks

@ The most relevant justification for mean-variance is probably the case
of small risks

o If we consider only small risks, we may use a second order Taylor
approximation of the vNM utility function
@ A second order Taylor approximation of a concave function is a
quadratic function with a negative coefficient on the quadratic term
> In other words, any risk-averse NM utility function can locally be
approximated with a quadratic function
» But the expectation of a quadratic utility function can be evaluated
with the mean and variance. Thus, to evaluate small risks, mean and
variance are enough
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Mean-Variance: Small Risks

o Let f: R — R be a smooth function. The Taylor approximation is

(z — x0)?

F@) = f(wo) + f'(wo) @ — z0) + " (w0)

r — I 3
‘|‘f”/($0)( 2 0) 4

@ So f(z) can approximately be evaluated by looking at the value of f
at another point xg, and making a correction involving the first n
derivatives

e We will use this idea to evaluate Efu(y)]
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Mean-Variance: Small Risks

o Consider first an additive risk, i.e. y = w + x where z is a zero mean
random variable

@ For small variance of x, E[v(y)] is close to v(w)
@ Consider the second order Taylor approximation,
E[z?]

E[v(wta)] = v(w)+v'(w) Blz]+0" (w) =5— = v(w)+v" (w)

Var(z)
2

@ Let ¢ be the certainty equivalent, v(c) = E[v(w + )]

@ For small variance of z, c is close to w, but let us look at the first
order Taylor approximation
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Mean-Variance: Small Risks

e Since E[v(w + x)] = v(c), this simplifies to

Var(z)
2

w—c= A(w)

@ w-—c is the risk premium

@ We see here that the risk premium is approximately a linear function
of the variance of the additive risk, with the slope of the effect equal
to half the coefficient of absolute risk
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Mean-Variance: Small Risks

The same exercise can be done with a multiplicative risk

Let y = gw, where g is a positive random variable with unit mean

Doing the same steps as before leads to

Var(g)

1 -k~ R(w) 5

where k is the certainty equivalent growth rate, v(kw) = Efv(gw)]

The coefficient of relative risk aversion is relevant for multiplicative
risk, absolute risk aversion for additive risk
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Feasible Combination of Mean and Variance

e Consider an arbitrary portfolio z = (z1,..., zy). Associated with such
a portfolio is a state-contingent wealth vector

J
Ws(z):ZTg-zj, s=1,...,8
j=1

e For a given probability vector p = (p1,...,ps) one can compute the
mean pay-off 1(z) which is achieved by this portfolio z as

S S J

u(z)ZZps'Ws(Z)Izps' TZ-ZJ‘
J=1

s=1 s=1 =

S J
=D > Pl =) K
i=1

j=1s=1

@ where p; == Zleps -1} denotes the expected pay-off of asset j
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Feasible Combination of Mean and Variance

@ Similarly, one can compute the variance of the pay-offs from portfolio
2 I o (= (R — i
z, 0%(2). Let oji :== >0 ps - (rs — pj)(rg — pi) be the covariance
of the pay-offs from assets j and k, then:

2
S S J
02(2):Zps'(WS(Z)—,u(Z))z:ZpS Z I _:uj
s=1 s=1 j=1
J S ' J J
:sz'zzk' Zps'(rﬁ—uj)'(rf—ﬂk) Zzzj‘zk'ajk
7j=1 k=1 s=1 j=1k=1
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Feasible Combination of Mean and Variance

@ The mean of a portfolio is the weighted sum of the mean pay-offs of
the individual assets

@ The variance of a portfolio is the quadratic form obtained from the
matrix of covariances of asset pay-offs:

o o 0J1
0%(z)=2z-Q-z where Q:=

o1y o 0JJ

o The feasible set of (i, 0%) combinations is written formally as follows:

J
(). NI 322 = Wo
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Feasible Combination of Mean and Variance

@ It is possible to represent the set of feasible mean-variance
combinations in a (u,0?) diagram or, as is more common in the
finance literature, in a mean-standard deviation diagram

n
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Feasible Combination of Mean and Variance in a
Two-Asset Model

@ Suppose now we consider two assets, and it is possible to construct
iso-u and iso-o contours in (21, z2) space

@ Iso-u contours are linear with slope and location parameters 1; and

H2:
p(z1,22) =1 - 21+ p2 - 22 = fi
ZZ
0 w4
i
-
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Feasible Combination of Mean and Variance in a
Two-Asset Model

@ Iso-o contours are obtained by fixing a level of variance or standard
deviation

2 2 2 _ -2
0°(z1,29) i =011 2] +2-012-21- 20+ 02225 =0
@ Depending on the determinants of covariance matrix, there are two
cases on the shape of Iso-o contours:
» if det Q > 0, the contour of 6(21, 22) must bean ellipse
» if det Q = 0, the contour of 02(z1, 29) must be a pair of parallel lines

‘2
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Converting (21, 22) Space to (i, o) Space

SN2
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Converting (21, 22) Space to (i, o) Space

al
Q|

@ The budget line in (21, 22) space has a unique representation in (ju, o)

space
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Minimum Variance Portfolio (MVP) in Complete Markets

@ Two asset markets are complete if there are exactly two states of the
world and the asset pay-offs are linearly independent

e Writing the probabilities of the two states as p and (1 — p), the
standard deviation can be transformed to yield:

o(z1,22) = VIp- (L =p)]-|(r1 = r3) - 21+ (r] = 13) - 22

@ The iso-o contours are therefore also linear in (z1, z2) space
» The iso-o contours in the case of incomplete markets were ellipses
centred on the origin and symmetric about a ray through the origin
> In the case of complete markets, the ellipses are 'stretched out’
infinitely in the direction of the longer of their two axes, and thus
become a set of parallel straight lines
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Minimum Variance Portfolio (MVP) in Complete Markets

&
™
al

ql

Q|
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I
Budget line
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Minimum Variance Portfolio (MVP) in Complete Markets
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Minimum Variance Portfolio (MVP) in Complete Markets

Example: Let the pay-off matrix for the two assets be as follows:

rtori|l |1 1/2

rdor2l T 13/4 2
Let the probabilities of the two states be (p, (1 — p)) = (1/2,1/2)
Assume that the prices of the two assets are (¢1,¢2) = (3/4,1) and
that initial wealth is Wy =1
Derive the mean-variance frontier and find the MVP
The iso-p contours are given by the equation

4 7

Zzzg-u—m.zl

The iso-o contours are given by the equation

1
22=:|:§~5'+6'21

LEC, SJTU Financial Economics 2024 Winter 22/36




Minimum Variance Portfolio (MVP) in Complete Markets

Example: Let the pay-off matrix for the two assets be as follows:
rtori|l |1 1/2
rdor2l T 13/4 2
Let the probabilities of the two states be (p, (1 — p)) = (1/2,1/2)
Assume that the prices of the two assets are (¢1,¢2) = (3/4,1) and
that initial wealth is Wy =1
Derive the mean-variance frontier and find the MVP
The equation for the budget line in (21, 22) space is (3/4) - z1 + 22 =1
Solving the equations for the iso-i and iso-o contours to find a relationship

between p and o, and substituting the relationship between z; and 25 along the
budget line, we obtain the mean-variance frontier:

13 1
TR T
And the MVP is found by substituting o = 0 into the equation for the iso-o
contours: (z1,22) = (12/11,2/11)
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Portfolio Choice in Mean-variance Space

@ For the two-asset, two-state world, the agent’s choice problem in
(21, z2) space is written formally as follows:

maxp-u(r%-z1+r%-zg)+(1—p)-u(r%-zl—i—r%-zg)
21,22

subject to q1 - 21 + qo - z0 = Wy

o Alternatively, if there is a representation of the form V(u, o), then we
can define the portfolio choice problem in mean-variance space
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Portfolio Choice in Mean-variance Space

@ The assumption that V' (u, o) is increasing in p and decreasing in o
implies positively sloped indifference curves

u

u*
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Portfolio Choice in Mean-variance Space

Example: Let's continue the previous example. Now we assume
quadratic expected utility index be u(W) :=4 - W — (1/2) - W2.
Solve for the expected-utility-maximization problem in (z1, z5) space
The first order condition indicates that

p-A=(r-zm+rf-2) rM+1Q-p)-@-(r3-zn+r3-2) n _a
p-(d=(ri-zm+ri-2) 1+ (1—p)- (4= () 2z+715 22)) 13

q2

Together with the budget constraint, we can derive that:

21:19~2’2—8, 22:1—Z~Z1

Thus (27, 23) = (44/61,28/61)
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Portfolio Choice in Mean-variance Space

Example: Let's continue the previous example. Now we assume
quadratic expected utility index be u(W) :=4- W — (1/2) - W?
Consider the expected-utility-maximization problem in (u, o) space

The expected utility function can be transformed to yield:

1 1
V(o) =4d-p=5 -0 =5

Therefore the slope of an indifference curve in (u, o) space is derived as:

dp — 0V(-)/0oc o

do — OV()/on  4—p
The slope of the (u, o) frontier, on the other hand, is given by the
equation pu = 1—3 + % .
Thus we obtain (o*, u*) = (31/122,147/122)
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The Capital Asset-Pricing Model

@ Consider a general equilibrium in which there are I consumers,
(K — 1) risky assets, and one risk-free asset
o Capital Asset-Pricing Model (CAPM) proves the surprising result that
the relationship among the prices of assets in a general equilibrium is
linear
o Definitions and notations:
» The vector z = (21, ..., i) represents a portfolio
» The assets have pay-offs in each of the .S states denoted
(s=1,...,8k=1,...,K)
» The wealth derived in each state: Wy(z) = Zszl k. 2k, with
expectation u(z) = Zszl 1y - 2z, and variance:
HOEDIHIE ) DAREIR
» Denoting the partial derivative of u(2) and 02(z) w.r.t z; by
we(z) = 0p(2)/0z¢ and 03 (2) := do?(2) /02
pe(z) = pe and o7 (2) =2 - [Z,If:l 2k o) =2 0(2,0)
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The Capital Asset-Pricing Model

@ Consider the optimization problem for some consumer ¢ € 1,2,...,1:

max V' (u(2), 0% (2))

z

K K
subject to qu C 2k = qu - 2k
k=1 k=1
@ The FOCGs for this problem are:
Vi(p(2),0%(2))-1e(2)+ V3 (1(2), 0%(2))-07 (2) = Mgy, for £=1,..., K

where V{(+) and VZ(-) denote the partial derivatives of V(-) w.r.t p
and 02 and X is the Lagrange multiplier
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The Capital Asset-Pricing Model

@ A general equilibrium in this exchange economy is a vector of asset
prices ¢* = (qi, ..., qj) together with a vector of asset demands for
each consumer 2™ = (24, ..., 2%) such that markets clear:

I
24 = sz =
i=1

@ The capital asset-pricing equation is derived from the FOCs, evaluated
at equilibrium, and assuming that one of the assets is riskless
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The Capital Asset-Pricing Model

o Assuming that asset K is riskless, we know that 7 = r for all
s=1,...,8

o We have ux(2) =7 and 0% (z) = o(z, K) = 0. Substituting these
values into the first-order conditions and choosing the riskless asset as
numeraire qx = 1, we solve the K-th FOC as:

A= Viu(="),0%(=)) - 7

@ Substituting for A, the first K — 1 FOCs become:

K
Vi ((z"), 02 (7)) - (e =5 -r) +2- V3 (u(z"), 02 (7)) - ) 2050 = 0
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The Capital Asset-Pricing Model

K
Vi(u(2™),02(2™) - (e — q; - 7) +2- Va (u(z™), 0% (2™)) - Y 2l 050 =0
=1

@ This equation may be rewritten as:

K
O°(2") - (ue—qf -7) =D _ 2" o
j=1
where ©1(1%) i= —Vii(u(z"), (7)) /(2 - Vi (u(z"), 02(=)) s the
marginal rate of substitution along an individual agent's indifference
curve in (u, o) space
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The Capital Asset-Pricing Model

K

O (") (e —qf -r) =) 2o
j=1

@ Summing the equation over all consumers, and noting that
Zi[:l 2" = Zj, equilibrium (market clearing), we obtain:

0(2%) - (pe —q; -r) = 0(Z,0)

where 0(z*) := Y1 ©(2%*) is the sum of the agents’ marginal rates
of substitution and o(Z,¢) := Zszl Zj - 0jg,is the covariance of asset
£ with the aggregate endowments
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The Capital Asset-Pricing Model

0(z%) - (pe —aq; - 1) = 0(Z,0)

o Finally, multiplying the equation by Zy, and summing again over all
risky assets £ = 1,..., K — 1, we obtain

0(=") - (u(Z) =1 Wo(Z2)) = 0*(Z)
@ We solve the equation for 6(z*) and substituting into each assets’
pricing equation:

o(Z,0)

(7)) 1(Z) —r-Wo(Z)]

pe =7 g =
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The Capital Asset-Pricing Model

o If we measure asset returns as pay-offs per unit invested and asset
quantities in units of expenditure, we obtain the CAPM pricing
formula usually used in finance literature

e Writing B¢ := 6(Z,¢)/6%(Z), pricing formula becomes:

frg =1 =By~ [i(Z) — 7]
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The Capital Asset-Pricing Model

@ Purchasing an asset with an actual risk premium exceeding the one
predicted by the CAPM and selling assets with CAPM risk premiums
that exceed the actual one is a common decision rule for investors in
financial markets

risk premium of the market portfolio

/

risk premium of asset [

He

i(2)
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